Problem:
The Fibonacci sequence is defined by the recurrence relation:
Fn = Fn[−]1 + Fn[−]2, where F1 = 1 and F2 = 1.
Hence the first 12 terms will be:
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144
The 12th term, F12, is the first term to contain three digits.
What is the first term in the Fibonacci sequence to contain 1000 digits?
Solution:
4782
Code:
The solution may include methods that will be found here: Library.java .
public interface EulerSolution{ public String run(); }
/* * Solution to Project Euler problem 25 * By Nayuki Minase * * http://nayuki.eigenstate.org/page/project-euler-solutions * https://github.com/nayuki/Project-Euler-solutions */ import java.math.BigInteger; public final class p025 implements EulerSolution { public static void main(String[] args) { System.out.println(new p025().run()); } private static final int DIGITS = 1000; public String run() { BigInteger lowerthres = BigInteger.TEN.pow(DIGITS - 1); BigInteger upperthres = BigInteger.TEN.pow(DIGITS); BigInteger prev = BigInteger.ONE; BigInteger cur = BigInteger.ZERO; int i = 0; while (true) { // At this point, prev = fibonacci(i - 1) and cur = fibonacci(i) if (cur.compareTo(lowerthres) >= 0) return Integer.toString(i); else if (cur.compareTo(upperthres) >= 0) throw new RuntimeException("Not found"); BigInteger temp = cur.add(prev); prev = cur; cur = temp; i++; } } }
No comments :
Post a Comment