Problem:
Consider all integer combinations of ab for 2 [≤] a [≤] 5 and 2 [≤] b [≤] 5:
22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125
If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by ab for 2 [≤] a [≤] 100 and 2 [≤] b [≤] 100?
Solution:
9183
Code:
The solution may include methods that will be found here: Library.java .
public interface EulerSolution{ public String run(); }
/* * Solution to Project Euler problem 29 * By Nayuki Minase * * http://nayuki.eigenstate.org/page/project-euler-solutions * https://github.com/nayuki/Project-Euler-solutions */ import java.math.BigInteger; import java.util.HashSet; import java.util.Set; public final class p029 implements EulerSolution { public static void main(String[] args) { System.out.println(new p029().run()); } public String run() { Set<BigInteger> generated = new HashSet<BigInteger>(); for (int a = 2; a <= 100; a++) { for (int b = 2; b <= 100; b++) generated.add(BigInteger.valueOf(a).pow(b)); } return Integer.toString(generated.size()); } }
No comments :
Post a Comment