Project Euler > Problem 108 > Diophantine reciprocals I (Java Solution)

Problem:

In the following equation x, y, and n are positive integers.

1

x
+
1

y
=
1

n

For n = 4 there are exactly three distinct solutions:

1

5
+
1

20
=
1

4
1

6
+
1

12
=
1

4
1

8
+
1

8
=
1

4

What is the least value of n for which the number of distinct solutions exceeds one-thousand?

NOTE: This problem is an easier version of problem 110; it is strongly advised that you solve this one first.


Solution:

40824

Code:
The solution may include methods that will be found here: Library.java .

public interface EulerSolution{

public String run();

}
/* 
* Solution to Project Euler problem 8
* By Nayuki Minase
*
* http://nayuki.eigenstate.org/page/project-euler-solutions
* https://github.com/nayuki/Project-Euler-solutions
*/


public final class p008 implements EulerSolution {

public static void main(String[] args) {
System.out.println(new p008().run());
}


private static final String NUMBER = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450";


public String run() {
int maxProd = -1;
for (int i = 0; i + 5 <= NUMBER.length(); i++) {
int prod = 1;
for (int j = 0; j < 5; j++)
prod *= NUMBER.charAt(i + j) - '0';
maxProd = Math.max(prod, maxProd);
}
return Integer.toString(maxProd);
}

}


No comments :

Post a Comment

Follow Me

If you like our content, feel free to follow me to stay updated.

Subscribe

Enter your email address:

We hate spam as much as you do.

Upload Material

Got an exam, project, tutorial video, exercise, solutions, unsolved problem, question, solution manual? We are open to any coding material. Why not upload?

Upload

Copyright © 2012 - 2014 Java Problems  --  About  --  Attribution  --  Privacy Policy  --  Terms of Use  --  Contact