Problem:
Let pn be the nth prime: 2, 3, 5, 7, 11, ..., and let r be the remainder when (pn[−]1)n + (pn+1)n is divided by pn2.
For example, when n = 3, p3 = 5, and 43 + 63 = 280 [≡] 5 mod 25.
The least value of n for which the remainder first exceeds 109 is 7037.
Find the least value of n for which the remainder first exceeds 1010.
For example, when n = 3, p3 = 5, and 43 + 63 = 280 [≡] 5 mod 25.
The least value of n for which the remainder first exceeds 109 is 7037.
Find the least value of n for which the remainder first exceeds 1010.
Solution:
4179871
Code:
The solution may include methods that will be found here: Library.java .
public interface EulerSolution{
public String run();
}
/*
* Solution to Project Euler problem 23
* By Nayuki Minase
*
* http://nayuki.eigenstate.org/page/project-euler-solutions
* https://github.com/nayuki/Project-Euler-solutions
*/
public final class p023 implements EulerSolution {
public static void main(String[] args) {
System.out.println(new p023().run());
}
private static final int LIMIT = 28123;
private boolean[] isAbundant = new boolean[LIMIT + 1];
public String run() {
// Compute look-up table
for (int i = 1; i < isAbundant.length; i++)
isAbundant[i] = isAbundant(i);
int sum = 0;
for (int i = 1; i <= LIMIT; i++) {
if (!isSumOf2Abundants(i))
sum += i;
}
return Integer.toString(sum);
}
private boolean isSumOf2Abundants(int n) {
for (int i = 0; i <= n; i++) {
if (isAbundant[i] && isAbundant[n - i])
return true;
}
return false;
}
private static boolean isAbundant(int n) {
if (n < 1)
throw new IllegalArgumentException();
int sum = 1; // Sum of factors less than n
int end = Library.sqrt(n);
for (int i = 2; i <= end; i++) {
if (n % i == 0)
sum += i + n / i;
}
if (end * end == n)
sum -= end;
return sum > n;
}
}
No comments :
Post a Comment