Project Euler > Problem 124 > Ordered radicals (Java Solution)

Problem:

The radical of n, rad(n), is the product of distinct prime factors of n. For example, 504 = 23 [×] 32 [×] 7, so rad(504) = 2 [×] 3 [×] 7 = 42.

If we calculate rad(n) for 1 [≤] n [≤] 10, then sort them on rad(n), and sorting on n if the radical values are equal, we get:

Unsorted

Sorted

n

rad(n)


n

rad(n)

k
1
1

1
1
1
2
2

2
2
2
3
3

4
2
3
4
2

8
2
4
5
5

3
3
5
6
6

9
3
6
7
7

5
5
7
8
2

6
6
8
9
3

7
7
9
10
10

10
10
10

Let E(k) be the kth element in the sorted n column; for example, E(4) = 8 and E(6) = 9.

If rad(n) is sorted for 1 [≤] n [≤] 100000, find E(10000).


Solution:

2783915460

Code:
The solution may include methods that will be found here: Library.java .

public interface EulerSolution{

public String run();

}
/* 
* Solution to Project Euler problem 24
* By Nayuki Minase
*
* http://nayuki.eigenstate.org/page/project-euler-solutions
* https://github.com/nayuki/Project-Euler-solutions
*/


public final class p024 implements EulerSolution {

public static void main(String[] args) {
System.out.println(new p024().run());
}


public String run() {
// Initialize
int[] array = new int[10];
for (int i = 0; i < array.length; i++)
array[i] = i;

// Permute
for (int i = 0; i < 999999; i++) {
if (!Library.nextPermutation(array))
throw new AssertionError();
}

// Format output
String ans = "";
for (int i = 0; i < array.length; i++)
ans += array[i];
return ans;
}

}


No comments :

Post a Comment

Follow Me

If you like our content, feel free to follow me to stay updated.

Subscribe

Enter your email address:

We hate spam as much as you do.

Upload Material

Got an exam, project, tutorial video, exercise, solutions, unsolved problem, question, solution manual? We are open to any coding material. Why not upload?

Upload

Copyright © 2012 - 2014 Java Problems  --  About  --  Attribution  --  Privacy Policy  --  Terms of Use  --  Contact