Computing the polynomial mathematical function in java

Problem:

A polynomial function is a very famous mathematical function.
The greatest exponent, n, is called the degree of the polynomial. For example, p(x) = 7x4 2 is a
polynomial of degree 4. The simplest polynomials are constant polynomials such as p(x) = 6
(degree 0) and linear polynomials such as p(x) = 9x + 6 (degree 1). The unique zero polynomial
p(x) = 0 is defined to have degree 1. In this section we present a Polynomial class whose
instances represent mathematical polynomials and which supports the usual algebraic operations
on polynomials.
A polynomial can be regarded as a sum of distinct terms. A term is a mathematical function of
the form t (x) = cxe, where c is any real number and e is any nonnegative integer. The number c is
called the coefficient, and the number e is called the exponent.
To define a class whose objects represent polynomials, we use a linked list of Term objects.
For example, the polynomial p(x) = 3x2 2x + 5 could be represented as a list of three elements,
where the first element represents the term 3x2, the second element represents the term 2x, and
the third element represents the (constant) term 5.

Write a java program that computes the polynomial function.

Output:

Not applicable

Solution:

public class Polynomial {
private List<Term> list = new LinkedList<Term>();
public static final Polynomial ZERO = new Polynomial();
private Polynomial() { // default constructor
}
public Polynomial(double coef, int exp) {
if (coef != 0.0) {
list.add(new Term(coef, exp));
}
}
public Polynomial(Polynomial p) { // copy constructor
for (Term term : p.list) {
this.list.add(new Term(term));
}
}
public Polynomial(double... a) {
for (int i=0; i<a.length; i++) {
if (a[i] != 0.0) {
list.add(new Term(a[i], i));
}
}
}
public int degree() {
if (list.isEmpty()) {
return -1;
} else {
return list.get(list.size()-1).exp;
}
public boolean isZero() {
return list.isEmpty();
}
public Polynomial plus(Polynomial p) {
if (this.isZero()) {
return new Polynomial(p);
}
if (p.isZero()) {
return new Polynomial(this);
}
Polynomial q = new Polynomial();
ListIterator<Term> it = list.listIterator();
ListIterator<Term> itp = p.list.listIterator();
while (it.hasNext() && itp.hasNext()) {
Term term = it.next();
Term pTerm = itp.next();
if (term.exp < pTerm.exp) {
q.list.add(new Term(term));
itp.previous();
} else if (term.exp == pTerm.exp) {
q.list.add(new Term(term.coef + pTerm.coef, term.exp));
} else { // (term.exp > pTerm.exp)
q.list.add(new Term(pTerm));
it.previous();
}
}
while (it.hasNext()) {
q.list.add(new Term(it.next()));
}
while (itp.hasNext()) {
q.list.add(new Term(itp.next()));
}
return q;
}
public String toString() {
if (this.isZero()) {
return "0";
}
Iterator<Term> it = list.iterator();
StringBuilder buf = new StringBuilder();
boolean isFirstTerm = true;
while (it.hasNext()) {
Term term = it.next();
double c = term.coef;
int e = term.exp;
if (isFirstTerm) {
buf.append(String.format("%.2f", c));
isFirstTerm = false;
} else {
if (term.coef < 0) {
buf.append(String.format(" - %.2f", -c));
} else {
buf.append(String.format(" + %.2f", c));
}
}
if (e == 1) {
buf.append("x");
} else if (e > 1) {
buf.append("x^" + e);
}
}
return buf.toString();
}
private static class Term {
private double coef;
private int exp;
public Term(double coef, int exp) {
if (coef == 0.0 || exp < 0) {
throw new IllegalArgumentException();
}
this.coef = coef;
this.exp = exp;
}
public Term(Term that) { // copy constructor
this(that.coef, that.exp);
}
}
}


No comments :

Post a Comment

Follow Me

If you like our content, feel free to follow me to stay updated.

Subscribe

Enter your email address:

We hate spam as much as you do.

Upload Material

Got an exam, project, tutorial video, exercise, solutions, unsolved problem, question, solution manual? We are open to any coding material. Why not upload?

Upload

Copyright © 2012 - 2014 Java Problems  --  About  --  Attribution  --  Privacy Policy  --  Terms of Use  --  Contact